Wednesday, November 23, 2016

B) Modelos De Media Móvil

Los procesos de error promedio móvil (errores ARMA) y otros modelos que implican retrasos de los términos de error pueden ser estimados usando sentencias FIT y simulados o pronosticados usando sentencias SOLVE. Los modelos ARMA para el proceso de error se usan con frecuencia para modelos con residuos autocorrelados. La macro AR se puede utilizar para especificar modelos con procesos de error autorregresivo. La macro MA se puede utilizar para especificar modelos con procesos de error de media móvil. Errores auto-regresivos Un modelo con errores autorregresivos de primer orden, AR (1), tiene la forma mientras que un proceso de error AR (2) tiene la forma y así sucesivamente para procesos de orden superior. Obsérvese que los s son independientes e idénticamente distribuidos y tienen un valor esperado de 0. Un ejemplo de un modelo con un componente AR (2) es y así sucesivamente para procesos de orden superior. Por ejemplo, puede escribir un modelo de regresión lineal simple con MA (2) errores de media móvil, donde MA1 y MA2 son los parámetros de media móvil. Tenga en cuenta que RESID. Y se define automáticamente por PROC MODEL como La función ZLAG debe utilizarse para que los modelos MA trunquen la recursión de los retrasos. Esto asegura que los errores rezagados empiezan a cero en la fase de cebado y no propagan los valores faltantes cuando faltan las variables del período de cebado y aseguran que los errores futuros son cero en lugar de faltar durante la simulación o la predicción. Para obtener más información sobre las funciones de retraso, consulte la sección Lag Logic. El modelo general ARMA (p, q) tiene la siguiente forma Un modelo ARMA (p, q) se puede especificar de la siguiente manera: donde AR i y MA j representan Los parámetros autorregresivos y de media móvil para los diferentes desfases. Puede utilizar cualquier nombre que desee para estas variables, y hay muchas formas equivalentes de que la especificación podría escribirse. Los procesos ARMA vectoriales también se pueden estimar con PROC MODEL. Por ejemplo, un proceso AR (1) de dos variables para los errores de las dos variables endógenas Y1 e Y2 puede especificarse como sigue: Problemas de Convergencia con Modelos ARMA Los modelos ARMA pueden ser difíciles de estimar. Si las estimaciones de parámetros no están dentro del intervalo apropiado, los términos residuales de modelos de media móvil crecen exponencialmente. Los residuos calculados para observaciones posteriores pueden ser muy grandes o pueden desbordarse. Esto puede ocurrir ya sea porque se utilizaron valores iniciales incorrectos o porque las iteraciones se alejaron de valores razonables. Debe tenerse cuidado al elegir los valores iniciales para los parámetros ARMA. Los valores iniciales de 0,001 para los parámetros ARMA normalmente funcionan si el modelo se ajusta bien a los datos y el problema está bien condicionado. Tenga en cuenta que un modelo de MA a menudo puede ser aproximado por un modelo de AR de alto orden, y viceversa. Esto puede dar lugar a una alta colinealidad en los modelos ARMA mixtos, lo que a su vez puede causar un grave mal acondicionamiento en los cálculos y la inestabilidad de los parámetros estimados. Si tiene problemas de convergencia mientras estima un modelo con procesos de error ARMA, intente estimarlos en pasos. En primer lugar, utilice una sentencia FIT para estimar sólo los parámetros estructurales con los parámetros ARMA mantenidos a cero (o a estimaciones previas razonables si están disponibles). A continuación, utilice otra instrucción FIT para estimar sólo los parámetros ARMA, utilizando los valores de los parámetros estructurales de la primera ejecución. Dado que los valores de los parámetros estructurales es probable que estén cerca de sus estimaciones finales, las estimaciones de los parámetros de ARMA podrían ahora converger. Finalmente, use otra instrucción FIT para producir estimaciones simultáneas de todos los parámetros. Dado que los valores iniciales de los parámetros ahora es probable que estén muy cerca de sus estimaciones conjuntas finales, las estimaciones deben converger rápidamente si el modelo es apropiado para los datos. AR Condiciones iniciales Los retornos iniciales de los términos de error de los modelos AR (p) pueden modelarse de diferentes maneras. Los métodos de arranque de errores autorregresivos soportados por los procedimientos SAS / ETS son los siguientes: mínimos cuadrados condicionales (procedimientos ARIMA y MODEL) mínimos cuadrados incondicionales (procedimientos AUTOREG, ARIMA y MODELO) Yule-Walker (Procedimiento AUTOREG solamente) Hildreth-Lu, que elimina las primeras p observaciones (procedimiento MODEL solamente) Consulte el Capítulo 8, Procedimiento AUTOREG, para una explicación y discusión de los méritos de varios métodos de arranque AR (p). Las inicializaciones CLS, ULS, ML y HL pueden realizarse mediante PROC MODEL. Para errores AR (1), estas inicializaciones se pueden producir como se muestra en la Tabla 18.2. Estos métodos son equivalentes en muestras grandes. Tabla 18.2 Inicializaciones realizadas por PROC MODEL: AR (1) ERRORES Los retornos iniciales de los términos de error de los modelos MA (q) también se pueden modelar de diferentes maneras. Los siguientes paradigmas de inicio de error de media móvil son soportados por los procedimientos ARIMA y MODELO: mínimos cuadrados incondicionales mínimos condicionales condicionales El método de mínimos cuadrados condicionales para estimar los términos de error de media móvil no es óptimo porque ignora el problema de inicio. Esto reduce la eficiencia de las estimaciones, aunque siguen siendo imparciales. Los residuos rezagados iniciales, que se extienden antes del inicio de los datos, se supone que son 0, su valor esperado incondicional. Esto introduce una diferencia entre estos residuales y los residuos de mínimos cuadrados generalizados para la covarianza media móvil, que, a diferencia del modelo autorregresivo, persiste a través del conjunto de datos. Por lo general, esta diferencia converge rápidamente a 0, pero para los procesos de media móvil no inversa la convergencia es bastante lenta. Para minimizar este problema, debe tener un montón de datos, y las estimaciones de parámetros del promedio móvil deberían estar dentro del intervalo invertible. Este problema se puede corregir a expensas de escribir un programa más complejo. Las estimaciones de mínimos cuadrados incondicionales para el proceso MA (1) se pueden producir especificando el modelo de la siguiente manera: Los errores de media móvil pueden ser difíciles de estimar. Debe considerar usar una aproximación AR (p) al proceso del promedio móvil. Un proceso de media móvil normalmente puede ser bien aproximado por un proceso autorregresivo si los datos no han sido suavizados o diferenciados. La macro AR La macro AR de SAS genera instrucciones de programación para el MODELO PROC para modelos autorregresivos. La macro AR forma parte del software SAS / ETS y no es necesario configurar ninguna opción especial para utilizar la macro. El proceso autorregresivo puede aplicarse a los errores de la ecuación estructural oa las propias series endógenas. La macro AR puede utilizarse para los siguientes tipos de autorregresión: autorreversión vectorial sin restricciones autorregresión vectorial restringida Autoregresión univariable Para modelar el término de error de una ecuación como un proceso autorregresivo, utilice la siguiente sentencia después de la ecuación: Por ejemplo, supongamos que Y es una Función lineal de X1, X2 y un error AR (2). Escribirías este modelo de la siguiente manera: Las llamadas a AR deben venir después de todas las ecuaciones a las que se aplica el proceso. La invocación de macros anterior, AR (y, 2), produce las declaraciones mostradas en la salida LIST de la Figura 18.58. Figura 18.58 Salida de opción LIST para un modelo AR (2) Las variables prefijadas PRED son variables temporales del programa utilizadas para que los retrasos de los residuos sean los residuos correctos y no los redefinidos por esta ecuación. Tenga en cuenta que esto es equivalente a las declaraciones explícitamente escritas en la sección Formulario General para Modelos ARMA. También puede restringir los parámetros autorregresivos a cero en los retornos seleccionados. Por ejemplo, si desea parámetros autorregresivos en los retornos 1, 12 y 13, puede utilizar las siguientes sentencias: Estas instrucciones generan la salida que se muestra en la Figura 18.59. Figura 18.59 Salida de opción LIST para un modelo AR con Lags en 1, 12 y 13 El listado de procedimientos MODEL de la declaración de código de programa compilado como analizado PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. Y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) yl12 ZLAG12 (y - perdy) yl13 ZLAG13 (y - perdy) RESID. y PRED. y - ACTUAL. y PRED. y - y Hay Variaciones en el método de los mínimos cuadrados condicionales, dependiendo de si las observaciones al comienzo de la serie se utilizan para calentar el proceso AR. De forma predeterminada, el método de mínimos cuadrados condicionales de AR utiliza todas las observaciones y supone ceros para los retardos iniciales de los términos autorregresivos. Utilizando la opción M, puede solicitar que AR utilice el método de mínimos cuadrados incondicionales (ULS) o de máxima verosimilitud (ML). Por ejemplo, las discusiones de estos métodos se proporcionan en la sección AR Condiciones iniciales. Mediante el uso de la opción MCLS n, puede solicitar que las primeras n observaciones se utilicen para calcular las estimaciones de los retrasos autorregresivos iniciales. En este caso, el análisis comienza con la observación n 1. Por ejemplo: Puede utilizar la macro AR para aplicar un modelo autorregresivo a la variable endógena, en lugar del término de error, mediante la opción TYPEV. Por ejemplo, si desea agregar los cinco retrasos anteriores de Y a la ecuación del ejemplo anterior, podría utilizar AR para generar los parámetros y los retrasos mediante las siguientes sentencias: Las sentencias anteriores generan la salida que se muestra en la Figura 18.60. Figura 18.60 Salida de la opción LIST para un modelo AR de Y Este modelo predice Y como una combinación lineal de X1, X2, una intersección y los valores de Y en los cinco períodos más recientes. Autoregresión vectorial sin restricciones Para modelar los términos de error de un conjunto de ecuaciones como un proceso autorregresivo vectorial, utilice la siguiente forma de la macro AR después de las ecuaciones: El valor del nombre del proceso es cualquier nombre que suministre para que AR utilice para crear nombres para el autorregresivo Parámetros. Puede utilizar la macro AR para modelar varios procesos AR diferentes para diferentes conjuntos de ecuaciones utilizando diferentes nombres de proceso para cada conjunto. El nombre del proceso garantiza que los nombres de variable utilizados sean únicos. Utilice un valor de nombre de proceso corto para el proceso si las estimaciones de parámetros se escriben en un conjunto de datos de salida. La macro AR intenta construir nombres de parámetro menores o iguales a ocho caracteres, pero esto está limitado por la longitud de nombreproceso. Que se utiliza como prefijo para los nombres de parámetro AR. El valor variablelist es la lista de variables endógenas para las ecuaciones. Por ejemplo, supongamos que los errores de las ecuaciones Y1, Y2 e Y3 son generados por un proceso autorregresivo vectorial de segundo orden. Puede utilizar las siguientes sentencias: que generan lo siguiente para Y1 y código similar para Y2 e Y3: Sólo el método de mínimos cuadrados condicionales (MCLS o MCLS n) se puede utilizar para procesos vectoriales. También puede usar el mismo formulario con restricciones de que la matriz de coeficientes sea 0 en retrasos seleccionados. Por ejemplo, las siguientes afirmaciones aplican un proceso vectorial de tercer orden a los errores de ecuación con todos los coeficientes con retraso 2 restringido a 0 y con los coeficientes en los retornos 1 y 3 sin restricciones: Puede modelar las tres series Y1Y3 como un proceso vectorial autorregresivo En las variables en lugar de en los errores mediante la opción TYPEV. Si desea modelar Y1Y3 como una función de valores pasados ​​de Y1Y3 y algunas variables o constantes exógenas, puede usar AR para generar las sentencias para los términos de rezago. Escriba una ecuación para cada variable para la parte no autorregresiva del modelo, y luego llame a AR con la opción TYPEV. Por ejemplo, la parte no autorregresiva del modelo puede ser una función de variables exógenas, o puede ser parámetros de intercepción. Si no hay componentes exógenos en el modelo de autorregresión vectorial, incluyendo no intercepciones, entonces asigne cero a cada una de las variables. Debe haber una asignación a cada una de las variables antes de que AR se llame. Este ejemplo modela el vector Y (Y1 Y2 Y3) como una función lineal solamente de su valor en los dos períodos anteriores y un vector de error de ruido blanco. El modelo tiene 18 (3 3 3 3) parámetros. Sintaxis de la macro AR Hay dos casos de la sintaxis de la macro AR. Cuando no se necesitan restricciones en un proceso AR vectorial, la sintaxis de la macro AR tiene la forma general especifica un prefijo para que AR utilice en la construcción de nombres de variables necesarios para definir el proceso AR. Si el endolist no se especifica, la lista endógena tiene por defecto el nombre. Que debe ser el nombre de la ecuación a la que se va a aplicar el proceso de error AR. El valor de nombre no puede superar los 32 caracteres. Es el orden del proceso AR. Especifica la lista de ecuaciones a las que se va a aplicar el proceso AR. Si se da más de un nombre, se crea un proceso vectorial sin restricciones con los residuos estructurales de todas las ecuaciones incluidas como regresores en cada una de las ecuaciones. Si no se especifica, endolist toma el nombre por defecto. Especifica la lista de rezagos en los que se van a agregar los términos AR. Los coeficientes de los términos a intervalos no listados se ponen a 0. Todos los desfases enumerados deben ser menores o iguales a nlag. Y no debe haber duplicados. Si no se especifica, el laglist se ajusta por defecto a todos los retornos 1 a nlag. Especifica el método de estimación a implementar. Los valores válidos de M son CLS (estimaciones de mínimos cuadrados condicionales), ULS (estimaciones de mínimos cuadrados incondicionales) y ML (estimaciones de máxima verosimilitud). MCLS es el valor predeterminado. Sólo se permite MCLS cuando se especifica más de una ecuación. Los métodos ULS y ML no son compatibles con modelos AR vectoriales por AR. Especifica que el proceso AR debe aplicarse a las variables endógenas en lugar de a los residuos estructurales de las ecuaciones. Autoregresión vectorial restringida Puede controlar qué parámetros se incluyen en el proceso, restringiendo a 0 aquellos parámetros que no incluye. Primero, use AR con la opción DEFER para declarar la lista de variables y definir la dimensión del proceso. A continuación, utilice llamadas AR adicionales para generar términos para las ecuaciones seleccionadas con variables seleccionadas en retrasos seleccionados. Por ejemplo, las ecuaciones de error producidas son las siguientes: Este modelo establece que los errores para Y1 dependen de los errores de Y1 y Y2 (pero no de Y3) en ambos rezagos 1 y 2 y que los errores para Y2 y Y3 dependen de Los errores anteriores para las tres variables, pero sólo con retraso 1. AR Macro Sintaxis para AR Restringido AR Un uso alternativo de AR se permite imponer restricciones en un proceso AR vector llamando a AR varias veces para especificar diferentes términos de AR y rezagos para diferentes Ecuaciones. La primera llamada tiene la forma general especifica un prefijo para que AR utilice en la construcción de nombres de variables necesarias para definir el proceso vector AR. Especifica el orden del proceso AR. Especifica la lista de ecuaciones a las que se va a aplicar el proceso AR. Especifica que AR no es para generar el proceso AR, sino que es esperar la información adicional especificada en las llamadas AR posteriores para el mismo valor de nombre. Las llamadas siguientes tienen la forma general es la misma que en la primera llamada. Especifica la lista de ecuaciones a las que deben aplicarse las especificaciones de esta llamada AR. Sólo los nombres especificados en el valor endolist de la primera llamada para el valor de nombre pueden aparecer en la lista de ecuaciones en eqlist. Especifica la lista de ecuaciones cuyos residuos estructurales rezagados se incluyen como regresores en las ecuaciones de eqlist. Solamente los nombres en el endolist de la primera llamada para el valor del nombre pueden aparecer en varlist. Si no se especifica, varlist por defecto es endolist. Especifica la lista de rezagos en los que se van a agregar los términos AR. Los coeficientes de los términos en retrasos no enumerados se establecen en 0. Todos los retrasos enumerados deben ser inferiores o iguales al valor de nlag. Y no debe haber duplicados. Si no se especifica, laglist se ajusta por defecto a todos los retornos 1 a nlag. La macro MA La macro MA SAS genera instrucciones de programación para MODELO PROC para modelos de media móvil. La macro MA forma parte del software SAS / ETS y no se necesitan opciones especiales para utilizar la macro. El proceso de error de media móvil puede aplicarse a los errores de la ecuación estructural. La sintaxis de la macro MA es la misma que la macro AR excepto que no hay ningún argumento TYPE. Cuando está utilizando las macros MA y AR combinadas, la macro MA debe seguir la macro AR. Las siguientes instrucciones SAS / IML producen un proceso de error ARMA (1, (1 3)) y lo guardan en el conjunto de datos MADAT2. Las siguientes instrucciones PROC MODEL se usan para estimar los parámetros de este modelo usando la estructura de error de máxima verosimilitud: Las estimaciones de los parámetros producidos por esta ejecución se muestran en la Figura 18.61. Figura 18.61 Estimaciones de un proceso ARMA (1, (1 3)) Hay dos casos de la sintaxis para la macro MA. Cuando no se necesitan restricciones en un proceso MA vectorial, la sintaxis de la macro MA tiene la forma general especifica un prefijo para que MA utilice en la construcción de nombres de variables necesarias para definir el proceso MA y es el endolist predeterminado. Es el orden del proceso MA. Especifica las ecuaciones a las que se aplica el proceso de MA. Si se da más de un nombre, la estimación CLS se utiliza para el proceso vectorial. Especifica los rezagos en los que se van a agregar los términos MA. Todos los desfases enumerados deben ser inferiores o iguales a nlag. Y no debe haber duplicados. Si no se especifica, el laglist se ajusta por defecto a todos los retornos 1 a nlag. Especifica el método de estimación a implementar. Los valores válidos de M son CLS (estimaciones de mínimos cuadrados condicionales), ULS (estimaciones de mínimos cuadrados incondicionales) y ML (estimaciones de máxima verosimilitud). MCLS es el valor predeterminado. Sólo se permite MCLS cuando se especifica más de una ecuación en el endolist. MA Sintaxis de macros para movimientos restringidos de medios móviles Un uso alternativo de MA permite imponer restricciones a un proceso de MA vectorial llamando a MA varias veces para especificar diferentes términos de MA y rezagos para diferentes ecuaciones. La primera llamada tiene la forma general especifica un prefijo para que MA utilice en la construcción de nombres de variables necesarias para definir el proceso de MA de vector. Especifica el orden del proceso MA. Especifica la lista de ecuaciones a las que se aplicará el proceso de MA. Especifica que MA no es para generar el proceso MA sino que es esperar a que la información adicional especificada en las llamadas MA más recientes para el mismo valor de nombre. Las llamadas siguientes tienen la forma general es la misma que en la primera llamada. Especifica la lista de ecuaciones a las que se aplicarán las especificaciones de esta llamada MA. Especifica la lista de ecuaciones cuyos residuos estructurales rezagados se incluyen como regresores en las ecuaciones de eqlist. Especifica la lista de rezagos a los que se van a añadir los términos MA. En la práctica, el promedio móvil proporcionará una buena estimación de la media de la serie temporal si la media es constante o cambia lentamente. En el caso de una media constante, el mayor valor de m dará las mejores estimaciones de la media subyacente. Un período de observación más largo promediará los efectos de la variabilidad. El propósito de proporcionar un m más pequeño es permitir que el pronóstico responda a un cambio en el proceso subyacente. Para ilustrar, proponemos un conjunto de datos que incorpora cambios en la media subyacente de la serie temporal. La figura muestra las series temporales utilizadas para la ilustración junto con la demanda media a partir de la cual se generó la serie. La media comienza como una constante en 10. Comenzando en el tiempo 21, aumenta en una unidad en cada período hasta que alcanza el valor de 20 en el tiempo 30. Entonces se vuelve constante otra vez. Los datos se simulan sumando a la media un ruido aleatorio de una distribución Normal con media cero y desviación estándar 3. Los resultados de la simulación se redondean al entero más próximo. La tabla muestra las observaciones simuladas utilizadas para el ejemplo. Cuando usamos la tabla, debemos recordar que en cualquier momento dado, sólo se conocen los datos pasados. Las estimaciones del parámetro del modelo, para tres valores diferentes de m se muestran junto con la media de las series temporales de la siguiente figura. La figura muestra la media móvil de la estimación de la media en cada momento y no la previsión. Los pronósticos cambiarían las curvas de media móvil a la derecha por períodos. Una conclusión es inmediatamente aparente de la figura. Para las tres estimaciones, la media móvil se queda por detrás de la tendencia lineal, con el rezago aumentando con m. El retraso es la distancia entre el modelo y la estimación en la dimensión temporal. Debido al desfase, el promedio móvil subestima las observaciones a medida que la media aumenta. El sesgo del estimador es la diferencia en un tiempo específico en el valor medio del modelo y el valor medio predicho por el promedio móvil. El sesgo cuando la media está aumentando es negativo. Para una media decreciente, el sesgo es positivo. El retraso en el tiempo y el sesgo introducido en la estimación son funciones de m. Cuanto mayor sea el valor de m. Mayor es la magnitud del retraso y sesgo. Para una serie cada vez mayor con tendencia a. Los valores de retraso y sesgo del estimador de la media se dan en las ecuaciones siguientes. Las curvas de ejemplo no coinciden con estas ecuaciones porque el modelo de ejemplo no está aumentando continuamente, sino que comienza como una constante, cambia a una tendencia y luego vuelve a ser constante de nuevo. También las curvas de ejemplo se ven afectadas por el ruido. El pronóstico de media móvil de los períodos en el futuro se representa desplazando las curvas hacia la derecha. El desfase y sesgo aumentan proporcionalmente. Las ecuaciones a continuación indican el retraso y sesgo de los períodos de previsión en el futuro en comparación con los parámetros del modelo. Nuevamente, estas fórmulas son para una serie de tiempo con una tendencia lineal constante. No debemos sorprendernos de este resultado. El estimador del promedio móvil se basa en el supuesto de una media constante, y el ejemplo tiene una tendencia lineal en la media durante una parte del período de estudio. Dado que las series de tiempo real rara vez obedecerán exactamente las suposiciones de cualquier modelo, debemos estar preparados para tales resultados. También podemos concluir de la figura que la variabilidad del ruido tiene el efecto más grande para m más pequeño. La estimación es mucho más volátil para el promedio móvil de 5 que el promedio móvil de 20. Tenemos los deseos en conflicto de aumentar m para reducir el efecto de la variabilidad debido al ruido y disminuir m para hacer que el pronóstico más sensible a los cambios En promedio El error es la diferencia entre los datos reales y el valor previsto. Si la serie temporal es verdaderamente un valor constante, el valor esperado del error es cero y la varianza del error está compuesta por un término que es una función de y un segundo término que es la varianza del ruido. El primer término es la varianza de la media estimada con una muestra de m observaciones, suponiendo que los datos provienen de una población con una media constante. Este término se minimiza haciendo m tan grande como sea posible. Un m grande hace que el pronóstico no responda a un cambio en la serie temporal subyacente. Para hacer que el pronóstico responda a los cambios, queremos que m sea lo más pequeño posible (1), pero esto aumenta la varianza del error. La predicción práctica requiere un valor intermedio. Previsión con Excel El complemento de previsión implementa las fórmulas de promedio móvil. El siguiente ejemplo muestra el análisis proporcionado por el complemento para los datos de muestra en la columna B. Las primeras 10 observaciones se indexan -9 a 0. En comparación con la tabla anterior, los índices de período se desplazan en -10. Las primeras diez observaciones proporcionan los valores iniciales para la estimación y se utilizan para calcular la media móvil para el período 0. La columna MA (10) (C) muestra las medias móviles calculadas. El parámetro de la media móvil m está en la celda C3. La columna Fore (1) (D) muestra un pronóstico para un período en el futuro. El intervalo de pronóstico está en la celda D3. Cuando el intervalo de pronóstico se cambia a un número mayor, los números de la columna Fore se desplazan hacia abajo. La columna Err (1) (E) muestra la diferencia entre la observación y el pronóstico. Por ejemplo, la observación en el tiempo 1 es 6. El valor pronosticado a partir de la media móvil en el tiempo 0 es 11.1. El error entonces es -5.1. La media de desviación estándar y la media media de desviación (MAD) se calculan en las celdas E6 y E7, respectivamente. Modelos de media móvil y de suavización exponencial Como primer paso para superar los modelos de media, aleatoria y lineal, los patrones no estacionales y las tendencias pueden ser Extrapolado utilizando un modelo de media móvil o suavizado. La suposición básica detrás de los modelos de promedio y suavizado es que la serie temporal es localmente estacionaria con una media que varía lentamente. Por lo tanto, tomamos un promedio móvil (local) para estimar el valor actual de la media y luego usarlo como pronóstico para el futuro cercano. Esto puede considerarse como un compromiso entre el modelo medio y el modelo aleatorio-paseo-sin-deriva. La misma estrategia se puede utilizar para estimar y extrapolar una tendencia local. Una media móvil se denomina a menudo una versión quotomoldeada de la serie original porque el promedio de corto plazo tiene el efecto de suavizar los golpes en la serie original. Al ajustar el grado de suavizado (el ancho de la media móvil), podemos esperar encontrar algún tipo de equilibrio óptimo entre el rendimiento de la media y los modelos de caminata aleatoria. El tipo más simple de modelo de promediación es el. Promedio móvil simple (igualmente ponderado): El pronóstico para el valor de Y en el tiempo t1 que se hace en el tiempo t es igual al promedio simple de las observaciones m más recientes: (Aquí y en otro lugar usaré el símbolo 8220Y-hat8221 para permanecer Para un pronóstico de la serie de tiempo Y hecho a la fecha más temprana posible posible por un modelo dado). Este promedio se centra en el período t (m1) / 2, lo que implica que la estimación de la media local tiende a quedar rezagada detrás del Valor real de la media local de aproximadamente (m1) / 2 periodos. Por lo tanto, decimos que la edad media de los datos en el promedio móvil simple es (m1) / 2 en relación con el período para el cual se calcula el pronóstico: es la cantidad de tiempo que las previsiones tienden a rezagarse detrás de los puntos de inflexión en el datos. Por ejemplo, si está promediando los últimos 5 valores, las previsiones serán de aproximadamente 3 períodos tarde en la respuesta a los puntos de inflexión. Tenga en cuenta que si m1, el modelo de media móvil simple (SMA) es equivalente al modelo de caminata aleatoria (sin crecimiento). Si m es muy grande (comparable a la longitud del período de estimación), el modelo SMA es equivalente al modelo medio. Como con cualquier parámetro de un modelo de pronóstico, es habitual ajustar el valor de k para obtener el mejor valor de los datos, es decir, los errores de predicción más pequeños en promedio. He aquí un ejemplo de una serie que parece presentar fluctuaciones aleatorias alrededor de una media de variación lenta. En primer lugar, vamos a tratar de encajar con un modelo de caminata al azar, que es equivalente a una media móvil simple de un término: El modelo de caminata aleatoria responde muy rápidamente a los cambios en la serie, pero al hacerlo, recoge gran parte del quotnoisequot en el Los datos (las fluctuaciones aleatorias), así como el quotsignalquot (la media local). Si en lugar de eso intentamos una media móvil simple de 5 términos, obtendremos un conjunto de pronósticos más suave: El promedio móvil simple a 5 terminos produce errores significativamente menores que el modelo de caminata aleatoria en este caso. La edad promedio de los datos de esta previsión es de 3 ((51) / 2), de modo que tiende a quedar a la zaga de los puntos de inflexión en aproximadamente tres períodos. (Por ejemplo, parece haber ocurrido una recesión en el período 21, pero las previsiones no giran hasta varios periodos más tarde). Obsérvese que los pronósticos a largo plazo del modelo SMA son una línea recta horizontal, al igual que en la caminata aleatoria modelo. Por lo tanto, el modelo SMA asume que no hay tendencia en los datos. Sin embargo, mientras que las previsiones del modelo de caminata aleatoria son simplemente iguales al último valor observado, las previsiones del modelo SMA son iguales a un promedio ponderado de valores recientes. Los límites de confianza calculados por Statgraphics para los pronósticos a largo plazo de la media móvil simple no se amplían a medida que aumenta el horizonte de pronóstico. Esto obviamente no es correcto Desafortunadamente, no hay una teoría estadística subyacente que nos diga cómo los intervalos de confianza deberían ampliarse para este modelo. Sin embargo, no es demasiado difícil calcular estimaciones empíricas de los límites de confianza para las previsiones a más largo plazo. Por ejemplo, podría configurar una hoja de cálculo en la que el modelo SMA se utilizaría para pronosticar dos pasos adelante, tres pasos adelante, etc. dentro de la muestra de datos históricos. A continuación, podría calcular las desviaciones estándar de los errores en cada horizonte de pronóstico y, a continuación, construir intervalos de confianza para pronósticos a más largo plazo sumando y restando múltiplos de la desviación estándar apropiada. Si intentamos una media móvil sencilla de 9 términos, obtendremos pronósticos aún más suaves y más de un efecto rezagado: La edad promedio es ahora de 5 períodos ((91) / 2). Si tomamos una media móvil de 19 términos, la edad promedio aumenta a 10: Obsérvese que, de hecho, las previsiones están ahora rezagadas detrás de los puntos de inflexión en aproximadamente 10 períodos. Qué cantidad de suavizado es la mejor para esta serie Aquí hay una tabla que compara sus estadísticas de error, incluyendo también un promedio de 3 términos: El modelo C, la media móvil de 5 términos, produce el valor más bajo de RMSE por un pequeño margen sobre los 3 A término y 9 promedios, y sus otras estadísticas son casi idénticas. Por lo tanto, entre los modelos con estadísticas de error muy similares, podemos elegir si preferiríamos un poco más de capacidad de respuesta o un poco más de suavidad en las previsiones. El modelo de media móvil simple descrito anteriormente tiene la propiedad indeseable de que trata las últimas k observaciones por igual e ignora por completo todas las observaciones precedentes. (Volver al principio de la página.) Browns Simple Exponential Smoothing Intuitivamente, los datos pasados ​​deben ser descontados de una manera más gradual - por ejemplo, la observación más reciente debería tener un poco más de peso que la segunda más reciente, y la segunda más reciente debería tener un poco más de peso que la tercera más reciente, y pronto. El modelo de suavizado exponencial simple (SES) lo logra. Sea 945 una constante quotsmoothingquot (un número entre 0 y 1). Una forma de escribir el modelo es definir una serie L que represente el nivel actual (es decir, el valor medio local) de la serie, tal como se estimó a partir de los datos hasta el presente. El valor de L en el tiempo t se calcula recursivamente a partir de su propio valor anterior como este: Así, el valor suavizado actual es una interpolación entre el valor suavizado anterior y la observación actual, donde 945 controla la proximidad del valor interpolado al valor más reciente observación. El pronóstico para el siguiente período es simplemente el valor suavizado actual: Equivalentemente, podemos expresar el próximo pronóstico directamente en términos de previsiones anteriores y observaciones previas, en cualquiera de las siguientes versiones equivalentes. En la primera versión, la previsión es una interpolación entre la previsión anterior y la observación anterior: En la segunda versión, la siguiente previsión se obtiene ajustando la previsión anterior en la dirección del error anterior por una cantidad fraccionada de 945. es el error hecho en Tiempo t En la tercera versión, el pronóstico es una media móvil exponencialmente ponderada (es decir, descontada) con el factor de descuento 1-945: La versión de interpolación de la fórmula de pronóstico es la más simple de usar si está implementando el modelo en una hoja de cálculo: se ajusta en un single cell and contains cell references pointing to the previous forecast, the previous observation, and the cell where the value of 945 is stored. Note that if 945 1, the SES model is equivalent to a random walk model (without growth). If 945 0, the SES model is equivalent to the mean model, assuming that the first smoothed value is set equal to the mean. (Return to top of page.) The average age of the data in the simple-exponential-smoothing forecast is 1/ 945 relative to the period for which the forecast is computed. (This is not supposed to be obvious, but it can easily be shown by evaluating an infinite series.) Hence, the simple moving average forecast tends to lag behind turning points by about 1/ 945 periods. For example, when 945 0.5 the lag is 2 periods when 945 0.2 the lag is 5 periods when 945 0.1 the lag is 10 periods, and so on. For a given average age (i. e. amount of lag), the simple exponential smoothing (SES) forecast is somewhat superior to the simple moving average (SMA) forecast because it places relatively more weight on the most recent observation --i. e. it is slightly more quotresponsivequot to changes occuring in the recent past. For example, an SMA model with 9 terms and an SES model with 945 0.2 both have an average age of 5 for the data in their forecasts, but the SES model puts more weight on the last 3 values than does the SMA model and at the same time it doesn8217t entirely 8220forget8221 about values more than 9 periods old, as shown in this chart: Another important advantage of the SES model over the SMA model is that the SES model uses a smoothing parameter which is continuously variable, so it can easily optimized by using a quotsolverquot algorithm to minimize the mean squared error. The optimal value of 945 in the SES model for this series turns out to be 0.2961, as shown here: The average age of the data in this forecast is 1/0.2961 3.4 periods, which is similar to that of a 6-term simple moving average. The long-term forecasts from the SES model are a horizontal straight line . as in the SMA model and the random walk model without growth. However, note that the confidence intervals computed by Statgraphics now diverge in a reasonable-looking fashion, and that they are substantially narrower than the confidence intervals for the random walk model. The SES model assumes that the series is somewhat quotmore predictablequot than does the random walk model. An SES model is actually a special case of an ARIMA model. so the statistical theory of ARIMA models provides a sound basis for calculating confidence intervals for the SES model. In particular, an SES model is an ARIMA model with one nonseasonal difference, an MA(1) term, and no constant term . otherwise known as an quotARIMA(0,1,1) model without constantquot. The MA(1) coefficient in the ARIMA model corresponds to the quantity 1- 945 in the SES model. For example, if you fit an ARIMA(0,1,1) model without constant to the series analyzed here, the estimated MA(1) coefficient turns out to be 0.7029, which is almost exactly one minus 0.2961. It is possible to add the assumption of a non-zero constant linear trend to an SES model. To do this, just specify an ARIMA model with one nonseasonal difference and an MA(1) term with a constant, i. e. an ARIMA(0,1,1) model with constant. The long-term forecasts will then have a trend which is equal to the average trend observed over the entire estimation period. You cannot do this in conjunction with seasonal adjustment, because the seasonal adjustment options are disabled when the model type is set to ARIMA. However, you can add a constant long-term exponential trend to a simple exponential smoothing model (with or without seasonal adjustment) by using the inflation adjustment option in the Forecasting procedure. The appropriate quotinflationquot (percentage growth) rate per period can be estimated as the slope coefficient in a linear trend model fitted to the data in conjunction with a natural logarithm transformation, or it can be based on other, independent information concerning long-term growth prospects. (Return to top of page.) Browns Linear (i. e. double) Exponential Smoothing The SMA models and SES models assume that there is no trend of any kind in the data (which is usually OK or at least not-too-bad for 1-step-ahead forecasts when the data is relatively noisy), and they can be modified to incorporate a constant linear trend as shown above. What about short-term trends If a series displays a varying rate of growth or a cyclical pattern that stands out clearly against the noise, and if there is a need to forecast more than 1 period ahead, then estimation of a local trend might also be an issue. The simple exponential smoothing model can be generalized to obtain a linear exponential smoothing (LES) model that computes local estimates of both level and trend. The simplest time-varying trend model is Browns linear exponential smoothing model, which uses two different smoothed series that are centered at different points in time. The forecasting formula is based on an extrapolation of a line through the two centers. (A more sophisticated version of this model, Holt8217s, is discussed below.) The algebraic form of Brown8217s linear exponential smoothing model, like that of the simple exponential smoothing model, can be expressed in a number of different but equivalent forms. The quotstandardquot form of this model is usually expressed as follows: Let S denote the singly-smoothed series obtained by applying simple exponential smoothing to series Y. That is, the value of S at period t is given by: (Recall that, under simple exponential smoothing, this would be the forecast for Y at period t1.) Then let Squot denote the doubly-smoothed series obtained by applying simple exponential smoothing (using the same 945 ) to series S: Finally, the forecast for Y tk . for any kgt1, is given by: This yields e 1 0 (i. e. cheat a bit, and let the first forecast equal the actual first observation), and e 2 Y 2 8211 Y 1 . after which forecasts are generated using the equation above. This yields the same fitted values as the formula based on S and S if the latter were started up using S 1 S 1 Y 1 . This version of the model is used on the next page that illustrates a combination of exponential smoothing with seasonal adjustment. Holt8217s Linear Exponential Smoothing Brown8217s LES model computes local estimates of level and trend by smoothing the recent data, but the fact that it does so with a single smoothing parameter places a constraint on the data patterns that it is able to fit: the level and trend are not allowed to vary at independent rates. Holt8217s LES model addresses this issue by including two smoothing constants, one for the level and one for the trend. At any time t, as in Brown8217s model, the there is an estimate L t of the local level and an estimate T t of the local trend. Here they are computed recursively from the value of Y observed at time t and the previous estimates of the level and trend by two equations that apply exponential smoothing to them separately. If the estimated level and trend at time t-1 are L t82091 and T t-1 . respectively, then the forecast for Y tshy that would have been made at time t-1 is equal to L t-1 T t-1 . When the actual value is observed, the updated estimate of the level is computed recursively by interpolating between Y tshy and its forecast, L t-1 T t-1, using weights of 945 and 1- 945. The change in the estimated level, namely L t 8209 L t82091 . can be interpreted as a noisy measurement of the trend at time t. The updated estimate of the trend is then computed recursively by interpolating between L t 8209 L t82091 and the previous estimate of the trend, T t-1 . using weights of 946 and 1-946: The interpretation of the trend-smoothing constant 946 is analogous to that of the level-smoothing constant 945. Models with small values of 946 assume that the trend changes only very slowly over time, while models with larger 946 assume that it is changing more rapidly. A model with a large 946 believes that the distant future is very uncertain, because errors in trend-estimation become quite important when forecasting more than one period ahead. (Return to top of page.) The smoothing constants 945 and 946 can be estimated in the usual way by minimizing the mean squared error of the 1-step-ahead forecasts. When this done in Statgraphics, the estimates turn out to be 945 0.3048 and 946 0.008 . The very small value of 946 means that the model assumes very little change in the trend from one period to the next, so basically this model is trying to estimate a long-term trend. By analogy with the notion of the average age of the data that is used in estimating the local level of the series, the average age of the data that is used in estimating the local trend is proportional to 1/ 946, although not exactly equal to it. In this case that turns out to be 1/0.006 125. This isn8217t a very precise number inasmuch as the accuracy of the estimate of 946 isn8217t really 3 decimal places, but it is of the same general order of magnitude as the sample size of 100, so this model is averaging over quite a lot of history in estimating the trend. The forecast plot below shows that the LES model estimates a slightly larger local trend at the end of the series than the constant trend estimated in the SEStrend model. Also, the estimated value of 945 is almost identical to the one obtained by fitting the SES model with or without trend, so this is almost the same model. Now, do these look like reasonable forecasts for a model that is supposed to be estimating a local trend If you 8220eyeball8221 this plot, it looks as though the local trend has turned downward at the end of the series What has happened The parameters of this model have been estimated by minimizing the squared error of 1-step-ahead forecasts, not longer-term forecasts, in which case the trend doesn8217t make a lot of difference. If all you are looking at are 1-step-ahead errors, you are not seeing the bigger picture of trends over (say) 10 or 20 periods. In order to get this model more in tune with our eyeball extrapolation of the data, we can manually adjust the trend-smoothing constant so that it uses a shorter baseline for trend estimation. For example, if we choose to set 946 0.1, then the average age of the data used in estimating the local trend is 10 periods, which means that we are averaging the trend over that last 20 periods or so. Here8217s what the forecast plot looks like if we set 946 0.1 while keeping 945 0.3. This looks intuitively reasonable for this series, although it is probably dangerous to extrapolate this trend any more than 10 periods in the future. What about the error stats Here is a model comparison for the two models shown above as well as three SES models. The optimal value of 945.for the SES model is approximately 0.3, but similar results (with slightly more or less responsiveness, respectively) are obtained with 0.5 and 0.2. (A) Holts linear exp. smoothing with alpha 0.3048 and beta 0.008 (B) Holts linear exp. smoothing with alpha 0.3 and beta 0.1 (C) Simple exponential smoothing with alpha 0.5 (D) Simple exponential smoothing with alpha 0.3 (E) Simple exponential smoothing with alpha 0.2 Their stats are nearly identical, so we really can8217t make the choice on the basis of 1-step-ahead forecast errors within the data sample. We have to fall back on other considerations. If we strongly believe that it makes sense to base the current trend estimate on what has happened over the last 20 periods or so, we can make a case for the LES model with 945 0.3 and 946 0.1. If we want to be agnostic about whether there is a local trend, then one of the SES models might be easier to explain and would also give more middle-of-the-road forecasts for the next 5 or 10 periods. (Return to top of page.) Which type of trend-extrapolation is best: horizontal or linear Empirical evidence suggests that, if the data have already been adjusted (if necessary) for inflation, then it may be imprudent to extrapolate short-term linear trends very far into the future. Trends evident today may slacken in the future due to varied causes such as product obsolescence, increased competition, and cyclical downturns or upturns in an industry. For this reason, simple exponential smoothing often performs better out-of-sample than might otherwise be expected, despite its quotnaivequot horizontal trend extrapolation. Damped trend modifications of the linear exponential smoothing model are also often used in practice to introduce a note of conservatism into its trend projections. The damped-trend LES model can be implemented as a special case of an ARIMA model, in particular, an ARIMA(1,1,2) model. It is possible to calculate confidence intervals around long-term forecasts produced by exponential smoothing models, by considering them as special cases of ARIMA models. (Beware: not all software calculates confidence intervals for these models correctly.) The width of the confidence intervals depends on (i) the RMS error of the model, (ii) the type of smoothing (simple or linear) (iii) the value(s) of the smoothing constant(s) and (iv) the number of periods ahead you are forecasting. In general, the intervals spread out faster as 945 gets larger in the SES model and they spread out much faster when linear rather than simple smoothing is used. This topic is discussed further in the ARIMA models section of the notes. (Return to top of page.)


No comments:

Post a Comment